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Although acquired characteristics are not incorporated into the genotype, some 
works have pointed to the influence of learning in evolution. We present a 
dynamic model of neural networks presenting evolutive features, even without 
modification in genotype, due to the introduction of culture. Our model 
presents other features that seem to reproduce some aspects of real world 
populations. 
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1. I N T R O D U C T I O N  

It is well accepted that Lamarck's hypothesis, which suggest that adapta- 
tions acquired by learning are incorporated into the genotype, is not 
verified. Nevertheless, this fact does not invalidate the argument that learn- 
ing can guide evolution. Clearly, for specimens living in an unpredictable 
environment, it is more advantageous to leave some decisions to learning 
rather than determine them genetically. (1~ A situation where this occurs is 
described by Crowl and Covich. (2) They studied the freshwater snail 
Physella virgata virgata, which is able to change its life history due to the 
presence of the crayfish Orconectes virilis, one of its predators. In the 
absence of crayfish, the snails grow quickly up to 4 mm, when reproduction 
begins. In this case, the snail survives from 3 to 5 months. When crayfish 
are present, the snails grow up to 10 mm and survive up to 14 months. 
There is a compromise between reproduction and growth. An interesting 
and important fact is that crayfish feed selectively on the smallest snails. 
Two hypotheses might explain the two different life histories. First, it 
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is result of genetic differentiation, i.e., long-term exposure to crayfish 
predation leads to natural selection of large snails. Second, it is only a 
phenotypically plastic response. A series of experiments was performed and 
some important conclusions determined the nature of life strategy. When 
snails of different sizes (some extracted from streams with crayfish and 
others from streams without them) are put in reservoirs without crayfish, 
the specimens of the first generation are small, which contradicts the first 
hypothesis. The snails decide for growth only in reservoirs where there are 
crayfish preying on them. In reservoirs where there are crayfish and snails, 
but without predation, the snails decide for rapid maturation. The informa- 
tion from predation, which means the warning to increase growth, might 
be a chemical substance released in this process. In this case, the evolution 
is clearly dictated by learning. In summary, snails can modify their life 
history due to learning in an unpredictable environment (a sudden addition 
of crayfish in streams where they were not present until this moment). 

This behavior is different from the Baldwin effect, (3) which concerns 
fixed environment properties. This last is hypothesized because if the 
evolution takes place only with the production of whole organisms 
(mutations), (4) it would occur at very high cost, by discarding the learning 
of useful adaptations acquired during an organism's lifetime. In this case, 
the search for good genotypes would be simply like the "needle-in-a- 
haystack ''(5) problem, i.e., like a random search. For the sake of clarity, 
imagine that individuals which are able to acquire a given ability during 
their lifetime have enhanced survival probability and consequently they will 
have a larger probability of reproduction than others that do not present 
it. The information that is determined in the genome is not the ability itself, 
but something like the capability of developing this ability during the 
lifetime. It is a less restrictive condition than the inclusion of this ability 
itself in the genome. Hence, the time and cost for adaptation are lowered. 
In summary, the purpose of learning is to enhance the efficiency of evolu- 
tion by minimizing the number of possibilities to be tested for adaptation. 

Recently, neural networks have been used as tools to study the effect 
of learning on evolution. ~5'6~ We will present some aspects of these referen- 
ces here. In these works, each individual in a population is a primitive 
neural network with many potential connections. For the sake of sim- 
plicity, it is supposed that each potential connection has only one corre- 
sponding gene in the genome. Each gene can assume three different forms 
(or alleles) 1, 0, and ?, specifying if its correspondent connection should be 
present (1), absent (0), or left to be determined through learning (?), i.e., 
a plastic connection that contains a switch which can be open or closed 
during a lifetime. The neural network structure determines the learning of 
a given set of informations. (7) 
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In ref. 5, the authors considered a population with 1000 individuals 
with 20 potential connections each. At the beginning, the alleles are chosen 
at random, with probability 0.5 for the ? allele and 0.25 for the 0 and 1 
alleles. In average, 10 connections will be set during a lifetime and the other 
10 will not be changed. Without loss of generality, it is supposed that there 
is a given combination of alleles (all of them 1 and called the correct 

combination hereafter) leading to a neural network structure that, in turn, 
corresponds to the learning of a specific information which gives a 
reproductive advantage to individuals that recognize it. During the lifetime, 
each individual performs up to 1000 learning trials. A learning trial means 
a proposal for determination of the plastic connections, i.e., set them to 0 
or 1. When one of these trials leads to the correct combination, the 
individual no longer performs learning trials. Note that individuals with 
some connection absent will never learn the correct combination (all con- 
nections set to one). The probability of one individual having all its alleles 
set to one is 1/42o ~ 10 12 in the first generation, an extremely small value. 
That is the probability of the correct combination to be reached by a ran- 
dom search, i.e., if learning does not play a role in evolution. On the other 
hand, the probability of an individual having no alleles set to 0 is 
(3/4) 2o ~ 10 -3. Considering 1000 individuals, there is a macroscopic prob- 
ability that at least one of them can have none of its connections set to 0, 
and consequently this one will be able to learn the correct combination. 
After 1000 learning trials (one generation), new individuals are generated 
from two others (sexual reproduction). The probability of a given 
individual to be selected as a parent is inversely proportional to the time 
it spends to learn the correct combination, such that individuals that learn 
rapidly have up to 20 times more chances to be a parent than individuals 
that never learn. The new individual's genome will be built choosing a 
fraction of the father's genome (an exact copy of its situation in t = 0) and 
the remainder will be copied from the mother. As the information that 
is passed to the young must come from the genotype rather than the 
phenotype, the learned connections are passed as ?. After a few generations 
(typically 20, in this case) the relative frequency of alleles converges to a 
situation where only alleles 1 and ? are present in all individuals of the 
population. Considering the typical values in this simulation, virtually all 
individuals in this population will learn the correct combination during 
their lifetimes (the Baldwin effect). In ref. 6, the individuals are asexual 
ones, and mutations must be introduced to allow evolution. Fontanari and 
Meir (6) used analytical techniques to extract results similar to those of 
Hinton and Nowlan ~5~ in some aspects. It is important to note that, in both 
models, the interaction between individuals occurs only in the reproduction 
stage. 
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In this work we present a more complex form of populations and each 
individual is a more complex sort of neural network. In our model, the 
interactions between individuals do not occur only through reproduction, 
but throughout life. We incorporate "culture" in our model, in the sense 
that information can be exchanged by the individuals and they may stand 
in the population for several generations. Another difference presented in 
this work is that the convergence state of the population is determined by 
the dynamic evolution itself, whereas in the other quoted models this state 
is fixed a priori. In Section 2 we present the Hopfield model for neural 
networks, in Section 3 we define the dynamics of our model; in Section 4 
we present the results and in Section 5 the conclusions. 

2. THE HOPFIELD M O D E L  

A neural network is a complex system that presents associative 
memory features. In a simplified version, the state of each neuron is a 
binary variable (Sk= +1) (8) and it is connected by synapses to other 
neurons. The synapse intensities are represented by Jjk, the so-called 
synaptic matrix elements. The state of a given neuron S k is determined 
by the states of the others and by the synapse intensities, which can lead 
to excitation or inhibition of S k. Hence, we can express the dynamics of a 
neural network as 

Sk(t + l)=sign(~ JjkSj(t)) (1) 

i.e., the neuron Sk will be active if the excitatory signals received surpass 
the inhibitory ones. This dynamics minimizes the following Hamiltonian: 

JV J r  

H=-�89 Z Z JikSjSe (2) 
j = l  kv~ j  

considering a network with Y neurons. 
Hopfield ~9) proposed that information {~j= + l ,  j =  1,..., .A/'} is con- 

sidered learned by the neural network if it corresponds to a minimum of 
the Hamiltonian (2) [or  an attractor fixed point of (1)]. In this way, the 
recognition of a given information corresponds to a minimization process. 
Learning means the modification of the synaptic matrix in order to impose 

as a minimum of (2) (in this paper, we will suppress the lower index, 
which refers to a given neuron, when considering the complete set of 
neurons). The original proposal uses Hebb's rule. (7) Starting from tabula 
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rasa, i.e., Jj~ = 0, new information ~ could be learned by modifying the 
couplings Jjk according to 

1 
AJj~ = ~  ~ (3) 

However, this rule guarantees that ~ ( # =  1, 2 ..... Jdg) are fixed points of 
(1) only if two conditions are fulfilled. First, the information must be 
uncorrelated, i.e., the overlap between two patterns, defined as 

,u ~ v  rn ~ v = -  ~ ~jr (4) 
.X j=l  

must be statistically null for all pairs #, v of informations. Second, the num- 
ber ~ of patterns stored in an Y-neu ron  network must be smaller than 
~c~#, where ac "~ 0.14.(1~ If the patterns are correlated, this number is even 
smaller, depending on the overlaps between information. The larger the 
overlaps, the smaller the c~. It is worth mentioning that, even with the 
above conditions satisfied, rule (3) does not guarantee that only ~* are the 
equilibrium states of (1). In reality, there are other states that can be local 
minima of (2) and we will refer to them as "spurious" states. (9'~~ The true 
informations, i.e., those stored in Jjk by (3), will be referred as "informa- 
tions" in this paper. 

3. D Y N A M I C S  OF POPULATION 

In this work, we consider a population with ~ individuals, each one 
being a Hopfield neural network with Y neurons. We generate at random 
~U informations, i.e., we choose at random the state (_+ 1) of each neuron 
~ , j =  1,..., Y (v=  1 ..... ~ ) .  These ~ informations will be stored in all 
individuals using (3). Hereafter, we will refer to these informations as vital 

ones. Furthermore, each individual may have also other informations, 
called individual ones, that are not necessarily stored in other individuals. 
In most cases we have tested, we begin with only one random individual 
information for each individual--the initial number ~ ( t  = 0) of individual 
informations in the individual I i is equal to one, for all i. These informa- 
tions lead to an initial diversification of the population. Thereby, each 
individual will have a different synaptic matrix. Informations will be 
acquired by each individual during its lifetime by receiving individual infor- 
mations from others according to the dynamic rules we describe below. 

In our simulations, each vital information and the initial individual 
ones are uncorrelated patterns, generated at random. At each time step, an 
individual I~ passes one of its individual informations (~ ,  for instance), 
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selected at random, to another individual I:  also randomly chosen. To pass 
an information means to give it as input (stimulus) to the neural network 
I2, i.e., S j ( t = 0 ) =  ~ ,  j =  1 ..... Y ,  where Sj refers to the j th  neuron of I2. 
This information will be processed by I2, following the dynamics (1), until 
an equilibrium (stationary) state is reached. Here "to process" means to 
apply the dynamic evolution (1) t o  each spin k, spanning the whole 
network, and corresponds to the recognition process. The equilibrium state 
can be either one of the informations introduced in (3) or a spurious state. 
In order to decide whether the information can be learned or not, the 
equilibrium state will be compared to all informations from I2, vital and 
individual ones. If this final state is equal to any information from I2, the 
stimulus will be taken as known and, in the next time step, we will choose 
another pair of individuals and repeat the process. Therefore a stimulus is 
taken as known if it belongs to some basin of attraction of the informa- 
tions. If the final state is a spurious one, the stimulus will be taken as an 
unknown information by 12. In this case, it may be learned by I2, by (ten- 
tatively, at the beginning) modifying the couplings of I2 (Jjk--' Jjk) accord- 
ing to rule (3). Note that is the stimulus ~ initially passed from I1 to I2, 
and not the stationary state reached after processing, that is included into 
Jj~ through rule (3). The information will be said to be learned, however, 
only if after its inclusion in the 12 synaptic matrix by (3) it remains as a 
minimum of the Hamiltonian (2) with Jjk. In order to check whether the 
information is a minimum, it is given again as input to the neural network 
12 but this time with couplings Jjk. If any neuron is flipped in the recogni- 
tion process (1), we can conclude that this information is not a minimum 
of (2) and therefore it will not be learned. In this case the modification 
Jjk ~ Jjk will not be performed, and we repeat the process for another pair 
of individuals. Furthermore, when some information is learned, we also 
perform the check of being minimum for all other individual informations 
from I2, because the minima can be changed by the inclusion of a new 
information. Hereafter we will refer to an information that, due to the 
learning of new ones, no longer corresponds to a minimum as an unlearned 
information. Unlearned informations may still be modified or forgotten. In 
this case, given the unlearned information itself as initial stimulus, we take 
the equilibrium state for which the system converges and store it explicitly 
in the network using the prescription (3) (also tentatively), and 
simultaneously we discard the older information also using (3) with the 
negative sign, i.e., 

1 jjj~_ ~ (5) 

where ~~ is the information to be discarded. We do it for all the patterns 
that are unlearned. Those patterns that stand as minima will be kept (this 
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can be understood as a personal interpretation of a given information), but 
the other ones that are not learned, even with the modification, will be 
forgotten, at last, through (5). 

We also performed the same checks on all ~/F vital informations. The 
difference is that vital informations cannot be forgotten or modified. When 
any vital information no longer corresponds to a minimum of (2), the 
individual must be shut out of the population. We will refer to this process 
as death. In our simulations we performed a "canonical" version of the 
population, i.e., we kept the number of individuals as constant. Thus, when 
an individual dies another is born. Let us describe the birth step now. The 
synaptic matrix of the new individual (young) will be constructed as a birth 
based on two other individuals, termed parents (sexual reproduction). The 
young will have, at beginning, the Y" vital informations. Accordingly, our 
model does not allow genetic evolution, but only learned informations can 
be modified during the dynamic process, once we do not allow mutations. 
The choice of the parents is performed such that the greater is the number 
of individual informations, the greater is the probability of this individual 
to be chosen. The number of informations is a more (but is not the most) 
realistic time scale than the number of time steps, because, in the real 
world, there is no direct relation between the number of informations 
passed and time steps, whereas we need time to learn a given amount of 
informations. 

The probability of a given individual Ii to be chosen as one of the 
parents, the father for instance, is 

(6) 

The mother will be chosen by the same process, except that she must be 
different from the father. All the individual informations that are present in 
both parents, simultaneously, will be passed to the young. If there are no 
common informations in the parents, a new one can be constructed from 
the crossover of the pair of informations (one from the father and the other 
from the mother) which has the largest overlap. In this new information, 
the state of a given neuron i will be chosen at random from the father (or 
from the mother) with equal probabilities. It is clear that this information 
will have a macroscopic overlap with the original pair. We also ran some 
cases where individuals are born with one individual random information, 
i.e., an information uncorrelated with all others. We will comment on the 
consequences of this modification in the next section. 

In summary, our model presents the following stages: flux of informa- 
tions, learning, forgetting, interpretation, death, and birth. The dynamics is 
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sequential, i.e., at each time step, one information is passed from each 
individual, spanning the whole population. We consider a "mean-field" 
version of population, i.e., each individual is connected and can exchange 
information with all others. 

4. S I M U L A T I O N S  A N D  R E S U L T S  

We tested our model by carrying out simulations on IBM-PC 80286 
and 80386 microcomputers, using the "multineuron coding. ' ' (m In our 
simulations we varied the number of initial informations ( ~  and d ) ,  the 
number of individuals N, and the number of neurons JV" in each individual. 
Also, for each run, we varied the random numbers that determine what 
informations and to whom they will be passed and also the parents in the 
birth step. We extract the number of steps to reach convergence, the final 
number of individual informations, the number of generations, the self- 
correlation (correlation between individuals at the end of the process), and 
its dispersion. 

The first result is that we always found a stationary state for this 
dynamics. The population converges to one configuration of informations 
where all the individual informations available at this time are considered 
known by all individuals, i.e., any information from any individual that is 
passed to any other belongs to the basin of attraction of some information 
of this last individual. In this stage, the synaptic matrices of all individuals 
will remain unchanged. When we varied only the random numbers, keep- 
ing all other conditions unchanged, we obtained different stationary states 
starting from the same initial population. The difference between them is 
that some informations present in some stationary states may not be pre- 
sent in others. This result shows us that there are several stable configura- 
tions of stored informations, as in a spin-glass phase space. This multiple- 
equilibrium behavior is indeed observed in real evolution processes (see, for 
instance, ref. 12). Moreover, multiequilibria seem to be a common charac- 
teristic among distinct dynamically evolved complex systems (see, for 
instance, ref. 13). This is a remarkable difference between our model and 
the one proposed in refs. 5 and 6, where only one stable configuration is 
reached. In the stationary state, we can find informations that were present 
in the initial stage of the population and others that are generated during 
the dynamic process (by interpretation or births). 

Different sequences of random numbers lead to different stationary 
states because the instant at which an information is passed plays an 
important role in the process. An information which is considered known 
by an individual at a given time and therefore will not be learned may no 
longer be recognized at a later time. That is why when an individual has 
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few stored informations the basins of attraction are large, and therefore a 
stimulus even far away from these may be recognized. For example, rule 
(3) guarantees that any two informations are minima of (2) if only these 
two are stored in the synaptic matrix. As in this case there are no spurious 
states, any stimulus will be recognized as one of the two informations; it 
does not matter how far away it is from the two minima. As soon as more 
informations are stored, the phase space is crowded of local minima and 
the basins of attraction become smaller, and the probability that the 
stimulus is attracted to a spurious state (which number also increases with 
the number of learned informations) grows. As a consequence, in this work 
we have shown that the more individuals learn, the larger is the extension 
of their ignorance. This feature already had been pointed out by Socrates. 
As in the real world, learning ability is larger when the individual has more 
stored informations. As the instant at which an information is passed is 
determined by the random number sequence, it will lead to different 
configurations. We have interpreted the spurious states as indicative of 
ignorance about a given information. 

In order to quantify our results, we defined some quantities measuring 
the correlation between a pair of individuals, by analyzing the individual 
informations of each one. We define the correlation matrix element C ~ j  as 
the mean overlap (4) between all informations from Ii with the ones with 
largest overlaps f rom/ j .  This matrix is nonsymmetric, i.e., Ci~ j v a Cj~ i. Let 
us suppose, for instance, that a given individual I i has the same four infor- 
mations of Ij and one fifth additional one, different from the four others. In 
this case, Cs~ i=  1. However, due to the presence of an additional informa- 
tion in I~, Ci~  s < 1. Explicitly, the mean correlation will be defined as 

= �89 j + c j  (7) 

Thus, C•= 1 if and only if I~ and /j have the same informations and no 
more beyond these. We also define C as the mean correlation of the 
population 

2 ~ 
C ~(~@--1) Z Z Co (8) 

i ~ l  j > i  

The case C = 1 means that the individuals are identical, whereas C ~ 0  
means that the individuals are very different from each other. The disper- 
sion AC~j, presented in Table I, refers to the dispersion on Cij for a given 
population, and it is related to the diversity of the individuals. If C = 1, 
then A C  o. = O. 

The occurrence (or not) of deaths and births folds the process in dif- 
ferent regimes. Deaths do not occur when the total number of individual 
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plus vital patterns in the population is lower than the limit c~c~/'. In this 
case, the convergence is reached in a few steps, but in the final state, the 
individuals are not exactly the same as one would expect by reasoning that 
all initial informations are passed to and learned by all individuals. Let us 
suppose that, for example, an individual had been generated with an infor- 
mation which is recognized as a vital one by the others. As the number of 
informations stored is low (c~ < ~c), there is no way by which this individual 
can lose this pattern, since that forgetting, interpretation, or death will 
not occur. In this case, this individual will be distinct from the others, 
presenting one more memorized information. 

The most ~nteresting results appear when deaths occur in the process. 
At the onset of death, the processes of forgetting and interpretation appear 
and new informations are passed to the population. We also ran the case 
where young were born with informations generated at random. In this 
case, we did not find stationary states, at least in a reasonable computa- 
tional time that was several times larger then the one spent when we used 
our birth algorithm. After this large number of steps, we measured the 
mean correlation of the population and we found statistically insignificant 
values for this quantity. Let us stress that when we used the algorithm for 
births described before we always found stationary states. This shows the 
decisive influence of learning from parents in the evolution of our popula- 
tion. A summary of our quantitative results is shown in Table I, and will 
be discussed in the following paragraphs. 

As can be seen from Table I, the final correlation is approximately the 
same ( ~  70%) if deaths occur (N = number of deaths /~ r 0). We also can 
see that the larger the number of informations at t = 0, the larger the num- 
ber of steps needed to reach an equilibrium state. We believe that the most 
realistic cases correspond to those with a large number ~ of individuals 
and a large number of initial individual informations ~(0) .  This situation 
would lead to a large number of generations, as can be seen comparing 
cases ! and I0, for example. 

The convergence time, i.e., the number of steps needed to reach 
convergence, is also a relevant quantity. As in neural network studies, (14~ 
this quantity has an important meaning in our model. The larger the 
convergence time, the larger the number of states similar to the equilibrium 
(equivalent to the metastable states of neural networks). Situations where 
few informations are learned reach the convergence with a smaller number 
of time steps (cases 3 and 7). On the other hand, when a large number of 
individual informations is available (cases4,9, and 10) the path to 
equilibrium can be retarded near some of these states, increasing the 
convergence times. 

Another result that we extracted from simulations and that is not pre- 
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sent in Table I concerns the introduction of reproductive advantage for the 
individuals with larger numbers of informations. One consequence of the 
introduction of this factor is the lowering of the number  of steps needed to 
reach equilibrium, although even without it we always found stationary 
states for the dynamics of our model. As in the real-world situation 
described in ref. 2, the time scale for convergence (number of generations) 
is small compared to the time scale for evolutive processes in natural 
selection through mutations. 

In order to test the stability of the equilibrium state of the population, 
we introduce, after convergence, a new individual with new individual 
informations, uncorrelated from all others. These informations may be 
passed to other individuals. As the original individuals of the population 
have a number of informations close to the limit c~ c, deaths can occur fre- 
quently if the information is not recognized by some individuals. In this 
case, changes in different scales occur in the population: some individuals 
are not modified (those that recognize the new informations as older ones); 
others learn the new informations and stay alive (the inclusion of this new 
information does not lead them to discard the vital ones although it may 
lead to a reinterpretation of the individual informations), whereas other 
individuals can die, i.e., those for which the new informations are incom- 
patible with the vital ones. This effect occurs because there are different 
clusters (or classes) of individuals that are similar, i.e., individuals that 

Table I. Results of S imula t ions  for  Ten Si tuat ions"  

# ~ ~ ~/ J(o) t y(oo) ~ c (%) Ac~ 

1 96 10 3 1 715 6.3 0 55 27 
2 96 10 9 1 384 2.4 2.2 73 22 
3 96 10 14 1 180 1.0 4.4 71 12 
4. 96 25 3 1 10029 8.8 2.5 84 20 
5 96 25 9 1 6844 3.2 12.8 69 13 
6 192 10 9 1 774 6.2 0.5 62 21 
7 192 10 18 1 174 1.0 3.9 68 11 
8 96 20 3 3 7740 7.9 3.2 67 18 
9 96 20 3 6 9803 7.1 3.8 75 22 

10 96 20 3 10 11378 8.6 4.5 69 15 

a ~/g is the number of neurons of each individual, ,~ the number of individuals, ~ the number 
of vital informations, S the number of individual informations, t the number of time steps 
needed to convergence, J ( o v )  the mean number of individual informations'after the con- 
vergence, fr the mean number of generations, C the correlation, and zIC o the dispersion of 
C in a given population, as described in the text. The averages are taken from five different 
set of populations. 
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have either exactly the same informations or a large set of them. We can 
say that the synaptic matrices of individuals in the same class have a 
macroscopic overlap with each other. These classes explain why the larger 
the number of generations, the smaller the dispersion, a tendency shown in 
Table I. Deaths allow mating of parents in the same class in order to 
generate young which are identical to the parents (we did not include 
social stratification; hence individuals from the same or different classes can 
fit together and generate young). Note that if we apply the recipe in which 
an individual with a large number of informations has reproductive advan- 
tages, the growth of the class with the largest number of informations is 
also enhanced, because the probability of mating in this same class is 
increased. Similar distributions of overlaps were also detected in ref. 15. 

The presence of classes also has other implications. As cited before, 
each class will suffer the influence of a foreign information in a proper man- 
ner and in addition whole classes can disappear or it is even possible that 
some of them are not altered by the presence of a new individual with com- 
pletely different informations. As changes occur in different scales because 
there are classes of different sizes, we suggest that the equilibrium state may 
be a critical one, and this model of a population may present "self-organiz- 
ing criticality. ''(16/As this point is not the main subject of this work, we will 
not explore it, although we believe that it is worth noting. If it did really 
occur, it would be a nice realization of self-organizing criticality in systems 
with a high connectivity. 

5. C O N C L U S I O N S  

In this paper, we presented a self-interacting population of neural 
networks, introducing culture. We have shown that learning plays a role in 
evolution, even when no mutations are included. The phase space of the 
system presents multivalleys, a characteristic feature of complex systems. 
Other interesting phenomena--formation of classes, possibility of self- 
organizing criticality, etc.--also appear in our model. 
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